3A 4A 5A 13X
ENERGYCO
AS01
Availability: | |
---|---|
Quantity: | |
Molecular Sieve
Molecular sieve (as known as synthetic zeolite) is a micro-porous aluminosilicate crystals. It is made of silicon-oxy tetrahedron, alumina tetrahedron to form a basic skeleton structure, in which exist metal cations (e.g. Na+, K+, Ca2+, etc.) to balance the excess negative charge in the crystal. According to the type of crystal structure, zeolite consists of: A-type (LTA), X-type (FAU), Y-type and so on. Lithium type has developed.
The chemical formula of zeolite
unit cell: Mx/n [ (AI02)x (Si02)y ]-w H20
Mx/n : Metal cations, to maintain charge balance in crystal
(AI02)x(Si02)y : Skeleton of zeolite, with different shapes hole and pore
w H20 : Chemical and physical adsorption of water, physical adsorption of water can desorption under certain conditions
Application: Air Pre-purification, PSA Units, Natural Gas, Dehydratation, Insulating Glass, Refrigerating System, Automobile, Hydrogen Absorption, O2, N2, CO2, CO Remover, VOCs Remover
Molecular Sieve
1. Molecular Sieve 3A.4A.5A.13X
2. Molecular Sieve JLOX series tor oxygen enrichment
3. Molecular Sieve JLPM series for cryogenic air separation unit
4. Molecular Sieve JLPH series for hydrogen purification
Annual Production Capacity: 42,000mts
Activated Alumina
1. Activated Alumina JLAA
2. Act1vated Alumina JLAZ series for cryogenic air separation unit
3. High Sodium Activated Alumina JLAA-HN
Annual Production Capacity: 5,000mts
Cited Wikipedia.org
Materials
Molecular sieves can be microporous, mesoporous, or macroporous material.
Zeolites (aluminosilicate minerals, not to be confused with aluminium silicate)
Zeolite LTA: 3–4 Å
Porous glass: 10 Å (1 nm), and up
Active carbon: 0–20 Å (0–2 nm), and up
Halloysite (endellite): Two common forms are found, when hydrated the clay exhibits a 1 nm spacing of the layers and when dehydrated (meta-halloysite) the spacing is 0.7 nm. Halloysite naturally occurs as small cylinders which average 30 nm in diameter with lengths between 0.5 and 10 micrometres.
Montmorillonite intermixes
Silicon dioxide (used to make silica gel): 24 Å (2.4 nm)
Macroporous silica, 200–1000 Å (20–100 nm)
Molecular sieves are often utilized in the petroleum industry, especially for drying gas streams. For example, in the liquid natural gas (LNG) industry, the water content of the gas needs to be reduced to less than 1 ppmv to prevent blockages caused by ice or methane clathrate.
In the laboratory, molecular sieves are used to dry solvent. "Sieves" have proven to be superior to traditional drying techniques, which often employ aggressive desiccants.
Under the term zeolites, molecular sieves are used for a wide range of catalytic applications. They catalyze isomerisation, alkylation, and epoxidation, and are used in large scale industrial processes, including hydrocracking and fluid catalytic cracking.
They are also used in the filtration of air supplies for breathing apparatus, for example those used by scuba divers and firefighters. In such applications, air is supplied by an air compressor and is passed through a cartridge filter which, depending on the application, is filled with molecular sieve and/or activated carbon, finally being used to charge breathing air tanks. Such filtration can remove particulates and compressor exhaust products from the breathing air supply.
The U.S. FDA has as of April 1, 2012, approved sodium aluminosilicate for direct contact with consumable items under 21 CFR 182.2727. Prior to this approval the European Union had used molecular sieves with pharmaceuticals and independent testing suggested that molecular sieves meet all government requirements but the industry had been unwilling to fund the expensive testing required for government approval.
Methods for regeneration of molecular sieves include pressure change (as in oxygen concentrators), heating and purging with a carrier gas (as when used in ethanol dehydration), or heating under high vacuum. Regeneration temperatures range from 175 °C (350 °F) to 315 °C (600 °F) depending on molecular sieve type. In contrast, silica gel can be regenerated by heating it in a regular oven to 120 °C (250 °F) for two hours. However, some types of silica gel will "pop" when exposed to enough water. This is caused by breakage of the silica spheres when contacting the water.
Model | Pore diameter (Ångström) | Bulk density (g/ml) | Adsorbed water (% w/w) | Attrition or abrasion, W (% w/w) | Usage |
---|---|---|---|---|---|
3Å | 3 | 0.60–0.68 | 19–20 | 0.3–0.6 | Desiccation of petroleum cracking gas and alkenes, selective adsorption of H2O in insulated glass (IG) and polyurethane, drying of ethanol fuel for blending with gasoline. |
4Å | 4 | 0.60–0.65 | 20–21 | 0.3–0.6 | Adsorption of water in sodium aluminosilicate which is FDA approved (see below) used as molecular sieve in medical containers to keep contents dry and as food additive having E-number E-554 (anti-caking agent); Preferred for static dehydration in closed liquid or gas systems, e.g., in packaging of drugs, electric components and perishable chemicals; water scavenging in printing and plastics systems and drying saturated hydrocarbon streams. Adsorbed species include SO2, CO2, H2S, C2H4, C2H6, and C3H6. Generally considered a universal drying agent in polar and nonpolar media; separation of natural gas and alkenes, adsorption of water in non-nitrogen sensitive polyurethane |
5Å-DW | 5 | 0.45–0.50 | 21–22 | 0.3–0.6 | Degreasing and pour point depression of aviation kerosene and diesel, and alkenes separation |
5Å small oxygen-enriched | 5 | 0.4–0.8 | ≥23 | Specially designed for medical or healthy oxygen generator[citation needed] | |
5Å | 5 | 0.60–0.65 | 20–21 | 0.3–0.5 | Desiccation and purification of air; dehydration and desulfurization of natural gas and liquid petroleum gas; oxygen and hydrogen production by pressure swing adsorption process |
10X | 8 | 0.50–0.60 | 23–24 | 0.3–0.6 | High-efficient sorption, used in desiccation, decarburization, desulfurization of gas and liquids and separation of aromatic hydrocarbon |
13X | 10 | 0.55–0.65 | 23–24 | 0.3–0.5 | Desiccation, desulfurization and purification of petroleum gas and natural gas |
13X-AS | 10 | 0.55–0.65 | 23–24 | 0.3–0.5 | Decarburization and desiccation in the air separation industry, separation of nitrogen from oxygen in oxygen concentrators |
Cu-13X | 10 | 0.50–0.60 | 23–24 | 0.3–0.5 | Sweetening (removal of thiols) of aviation fuel and corresponding liquid hydrocarbons |
3Å Usage
3Å molecular sieves are the necessary desiccant in petroleum and chemical industries for refining oil, polymerization, and chemical gas-liquid depth drying.
3Å molecular sieves are used to dry a range of materials, such as ethanol, air, refrigerants, natural gas and unsaturated hydrocarbons. The latter include cracking gas, acetylene, ethylene, propylene and butadiene.
3Å molecular sieve is utilized to remove water from ethanol, which can later be used directly as a bio-fuel or indirectly to produce various products such as chemicals, foods, pharmaceuticals, and more.
Drying solvents
4Å molecular sieves are widely used to dry laboratory solvents.[7] They can absorb water and other molecules with a critical diameter less than 4 Å such as NH3, H2S, SO2, CO2, C2H5OH, C2H6, and C2H4. They are widely used in the drying, refining and purification of liquids and gases (such as the preparation of argon).
Bottle of 4Å molecular sieves
These molecular sieves are used to assist detergents as they can produce demineralized water through calcium ion exchange, remove and prevent the deposition of dirt. They are widely used to replace phosphorus. The 4Å molecular sieve plays a major role to replace sodium tripolyphosphate as detergent auxiliary in order to mitigate the environmental impact of the detergent. It also can be used as a soap forming agent and in toothpaste.
4Å molecular sieves can purify sewage of cationic species such as ammonium ions, Pb2+, Cu2+, Zn2+ and Cd2+. Due to the high selectivity for NH4+ they have been successfully applied in the field to combat eutrophication and other effects in waterways due to excessive ammonium ions. 4Å molecular sieves have also been used to remove heavy metal ions present in water due to industrial activities.
The metallurgical industry: separating agent, separation, extraction of brine potassium, rubidium, caesium, etc.
Agriculture: soil conditioner
Medicine: load silver zeolite antibacterial agent.
Five-ångström (5Å) molecular sieves are often utilized in the petroleum industry, especially for the purification of gas streams and in the chemistry laboratory for separating compounds and drying reaction starting materials. They contain tiny pores of a precise and uniform size, and are mainly used as an adsorbent for gases and liquids.
Five-ångström molecular sieves are used to dry natural gas, along with performing desulfurization and decarbonation of the gas. They can also be used to separate mixtures of oxygen, nitrogen and hydrogen, and oil-wax n-hydrocarbons from branched and polycyclic hydrocarbons.
Classification
Molecular Sieve
Molecular sieve (as known as synthetic zeolite) is a micro-porous aluminosilicate crystals. It is made of silicon-oxy tetrahedron, alumina tetrahedron to form a basic skeleton structure, in which exist metal cations (e.g. Na+, K+, Ca2+, etc.) to balance the excess negative charge in the crystal. According to the type of crystal structure, zeolite consists of: A-type (LTA), X-type (FAU), Y-type and so on. Lithium type has developed.
The chemical formula of zeolite
unit cell: Mx/n [ (AI02)x (Si02)y ]-w H20
Mx/n : Metal cations, to maintain charge balance in crystal
(AI02)x(Si02)y : Skeleton of zeolite, with different shapes hole and pore
w H20 : Chemical and physical adsorption of water, physical adsorption of water can desorption under certain conditions
Application: Air Pre-purification, PSA Units, Natural Gas, Dehydratation, Insulating Glass, Refrigerating System, Automobile, Hydrogen Absorption, O2, N2, CO2, CO Remover, VOCs Remover
Molecular Sieve
1. Molecular Sieve 3A.4A.5A.13X
2. Molecular Sieve JLOX series tor oxygen enrichment
3. Molecular Sieve JLPM series for cryogenic air separation unit
4. Molecular Sieve JLPH series for hydrogen purification
Annual Production Capacity: 42,000mts
Activated Alumina
1. Activated Alumina JLAA
2. Act1vated Alumina JLAZ series for cryogenic air separation unit
3. High Sodium Activated Alumina JLAA-HN
Annual Production Capacity: 5,000mts
Cited Wikipedia.org
Materials
Molecular sieves can be microporous, mesoporous, or macroporous material.
Zeolites (aluminosilicate minerals, not to be confused with aluminium silicate)
Zeolite LTA: 3–4 Å
Porous glass: 10 Å (1 nm), and up
Active carbon: 0–20 Å (0–2 nm), and up
Halloysite (endellite): Two common forms are found, when hydrated the clay exhibits a 1 nm spacing of the layers and when dehydrated (meta-halloysite) the spacing is 0.7 nm. Halloysite naturally occurs as small cylinders which average 30 nm in diameter with lengths between 0.5 and 10 micrometres.
Montmorillonite intermixes
Silicon dioxide (used to make silica gel): 24 Å (2.4 nm)
Macroporous silica, 200–1000 Å (20–100 nm)
Molecular sieves are often utilized in the petroleum industry, especially for drying gas streams. For example, in the liquid natural gas (LNG) industry, the water content of the gas needs to be reduced to less than 1 ppmv to prevent blockages caused by ice or methane clathrate.
In the laboratory, molecular sieves are used to dry solvent. "Sieves" have proven to be superior to traditional drying techniques, which often employ aggressive desiccants.
Under the term zeolites, molecular sieves are used for a wide range of catalytic applications. They catalyze isomerisation, alkylation, and epoxidation, and are used in large scale industrial processes, including hydrocracking and fluid catalytic cracking.
They are also used in the filtration of air supplies for breathing apparatus, for example those used by scuba divers and firefighters. In such applications, air is supplied by an air compressor and is passed through a cartridge filter which, depending on the application, is filled with molecular sieve and/or activated carbon, finally being used to charge breathing air tanks. Such filtration can remove particulates and compressor exhaust products from the breathing air supply.
The U.S. FDA has as of April 1, 2012, approved sodium aluminosilicate for direct contact with consumable items under 21 CFR 182.2727. Prior to this approval the European Union had used molecular sieves with pharmaceuticals and independent testing suggested that molecular sieves meet all government requirements but the industry had been unwilling to fund the expensive testing required for government approval.
Methods for regeneration of molecular sieves include pressure change (as in oxygen concentrators), heating and purging with a carrier gas (as when used in ethanol dehydration), or heating under high vacuum. Regeneration temperatures range from 175 °C (350 °F) to 315 °C (600 °F) depending on molecular sieve type. In contrast, silica gel can be regenerated by heating it in a regular oven to 120 °C (250 °F) for two hours. However, some types of silica gel will "pop" when exposed to enough water. This is caused by breakage of the silica spheres when contacting the water.
Model | Pore diameter (Ångström) | Bulk density (g/ml) | Adsorbed water (% w/w) | Attrition or abrasion, W (% w/w) | Usage |
---|---|---|---|---|---|
3Å | 3 | 0.60–0.68 | 19–20 | 0.3–0.6 | Desiccation of petroleum cracking gas and alkenes, selective adsorption of H2O in insulated glass (IG) and polyurethane, drying of ethanol fuel for blending with gasoline. |
4Å | 4 | 0.60–0.65 | 20–21 | 0.3–0.6 | Adsorption of water in sodium aluminosilicate which is FDA approved (see below) used as molecular sieve in medical containers to keep contents dry and as food additive having E-number E-554 (anti-caking agent); Preferred for static dehydration in closed liquid or gas systems, e.g., in packaging of drugs, electric components and perishable chemicals; water scavenging in printing and plastics systems and drying saturated hydrocarbon streams. Adsorbed species include SO2, CO2, H2S, C2H4, C2H6, and C3H6. Generally considered a universal drying agent in polar and nonpolar media; separation of natural gas and alkenes, adsorption of water in non-nitrogen sensitive polyurethane |
5Å-DW | 5 | 0.45–0.50 | 21–22 | 0.3–0.6 | Degreasing and pour point depression of aviation kerosene and diesel, and alkenes separation |
5Å small oxygen-enriched | 5 | 0.4–0.8 | ≥23 | Specially designed for medical or healthy oxygen generator[citation needed] | |
5Å | 5 | 0.60–0.65 | 20–21 | 0.3–0.5 | Desiccation and purification of air; dehydration and desulfurization of natural gas and liquid petroleum gas; oxygen and hydrogen production by pressure swing adsorption process |
10X | 8 | 0.50–0.60 | 23–24 | 0.3–0.6 | High-efficient sorption, used in desiccation, decarburization, desulfurization of gas and liquids and separation of aromatic hydrocarbon |
13X | 10 | 0.55–0.65 | 23–24 | 0.3–0.5 | Desiccation, desulfurization and purification of petroleum gas and natural gas |
13X-AS | 10 | 0.55–0.65 | 23–24 | 0.3–0.5 | Decarburization and desiccation in the air separation industry, separation of nitrogen from oxygen in oxygen concentrators |
Cu-13X | 10 | 0.50–0.60 | 23–24 | 0.3–0.5 | Sweetening (removal of thiols) of aviation fuel and corresponding liquid hydrocarbons |
3Å Usage
3Å molecular sieves are the necessary desiccant in petroleum and chemical industries for refining oil, polymerization, and chemical gas-liquid depth drying.
3Å molecular sieves are used to dry a range of materials, such as ethanol, air, refrigerants, natural gas and unsaturated hydrocarbons. The latter include cracking gas, acetylene, ethylene, propylene and butadiene.
3Å molecular sieve is utilized to remove water from ethanol, which can later be used directly as a bio-fuel or indirectly to produce various products such as chemicals, foods, pharmaceuticals, and more.
Drying solvents
4Å molecular sieves are widely used to dry laboratory solvents.[7] They can absorb water and other molecules with a critical diameter less than 4 Å such as NH3, H2S, SO2, CO2, C2H5OH, C2H6, and C2H4. They are widely used in the drying, refining and purification of liquids and gases (such as the preparation of argon).
Bottle of 4Å molecular sieves
These molecular sieves are used to assist detergents as they can produce demineralized water through calcium ion exchange, remove and prevent the deposition of dirt. They are widely used to replace phosphorus. The 4Å molecular sieve plays a major role to replace sodium tripolyphosphate as detergent auxiliary in order to mitigate the environmental impact of the detergent. It also can be used as a soap forming agent and in toothpaste.
4Å molecular sieves can purify sewage of cationic species such as ammonium ions, Pb2+, Cu2+, Zn2+ and Cd2+. Due to the high selectivity for NH4+ they have been successfully applied in the field to combat eutrophication and other effects in waterways due to excessive ammonium ions. 4Å molecular sieves have also been used to remove heavy metal ions present in water due to industrial activities.
The metallurgical industry: separating agent, separation, extraction of brine potassium, rubidium, caesium, etc.
Agriculture: soil conditioner
Medicine: load silver zeolite antibacterial agent.
Five-ångström (5Å) molecular sieves are often utilized in the petroleum industry, especially for the purification of gas streams and in the chemistry laboratory for separating compounds and drying reaction starting materials. They contain tiny pores of a precise and uniform size, and are mainly used as an adsorbent for gases and liquids.
Five-ångström molecular sieves are used to dry natural gas, along with performing desulfurization and decarbonation of the gas. They can also be used to separate mixtures of oxygen, nitrogen and hydrogen, and oil-wax n-hydrocarbons from branched and polycyclic hydrocarbons.
Classification
Home | About Us | Products | Blog | Contact Us | Privacy Policy